

Marine biotoxin sampling: preconcentration and passive sampling; Environmental data to support aquaculture decision-making

Mass Spectrometry Group, MTU - Cork Dr Ambrose Furey CCHEM, FRSC

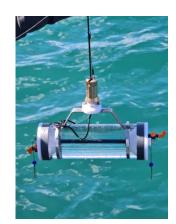
Halpin, NMCI, MTU - Cork **Mike Griew**, STREAM Conference – Waterford 21st June 2023

UNCER ENROPEADO ILUROPEAN UNION Llywodraeth Cymr Weish Governmer

Cronfa Datblygu Rhanbarthol Ewrop European Regional Development Fund

Introduction

- Overview of MTU contribution to STREAM
- Aquaculture, Algae and Marine Biotoxins
- Polymer Resin Absorbent beads, aka 'Solid Phase', biotoxin trap principles – live demo.
- SPATT monitoring.
- STREAM 'Smart' pumps.



- Multiparameter sonde deployment and water quality sampling program at Castletownbere.
- SPATT (Solid Phase Adsorption Toxin Tracking) bag deployment Castletownbere.
- Profile toxin level profiling (SPATT bags and vertical hauls) using LC-MS
- 'SMART' pump marine toxin preconcentration system development.
- Environmental data gathering system development: precipitation monitoring, water column data backhaul.

- Multiparameter sonde deployment and water quality sampling program at Castletownbere.
- SPATT (Solid Phase Adsorption Toxin Tracking) bag deployment - Castletownbere.
- Toxin level profiling (SPATT bags and vertical hauls) using LC-MS
- 'SMART' pump marine toxin preconcentration system development.
- Environmental data gathering system development precipitation monitoring, water column data backhaul.

- Multiparameter sonde deployment and water quality sampling program at Castletownbere.
- SPATT (Solid Phase Adsorption Toxin Tracking) bag deployment - Castletownbere.
- Profile toxin level profiling (SPATT bags and vertical hauls) using LC-MS
- 'SMART' pump marine toxin preconcentration system development.
- Environmental data gathering system development: precipitation monitoring, water column data backhaul.

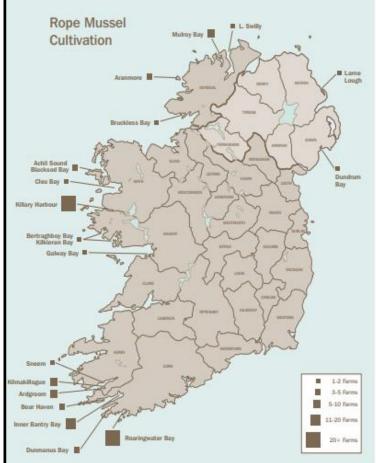
- Multiparameter sonde deployment and water quality sampling program at Castletownbere.
- SPATT (Solid Phase Adsorption Toxin Tracking) bag deployment Castletownbere.
- Profile toxin level profiling (SPATT bags and vertical hauls) using LC-MS
- 'SMART' pump marine toxin preconcentration system development.
- Environmental data gathering system development precipitation monitoring, water column data backhaul.

- Multiparameter sonde deployment and water quality sampling program at Castletownbere.
- SPATT (Solid Phase Adsorption Toxin Tracking) bag deployment - Castletownbere.
- Profile toxin level profiling (SPATT bags and vertical hauls) using LC-MS
- 'SMART' pump marine toxin preconcentration system development.
- Environmental data gathering system development: precipitation monitoring, water column data backhaul.

- Multiparameter sonde deployment and water quality sampling program at Castletownbere.
- SPATT (Solid Phase Adsorption Toxin Tracking) bag • deployment - Castletownbere.
- Profile toxin level profiling (SPATT bags and vertical • hauls) using LC-MS
- 'SMART' pump marine toxin preconcentration system development.
- Environmental data gathering system development: • precipitation monitoring, water column data backhaul.

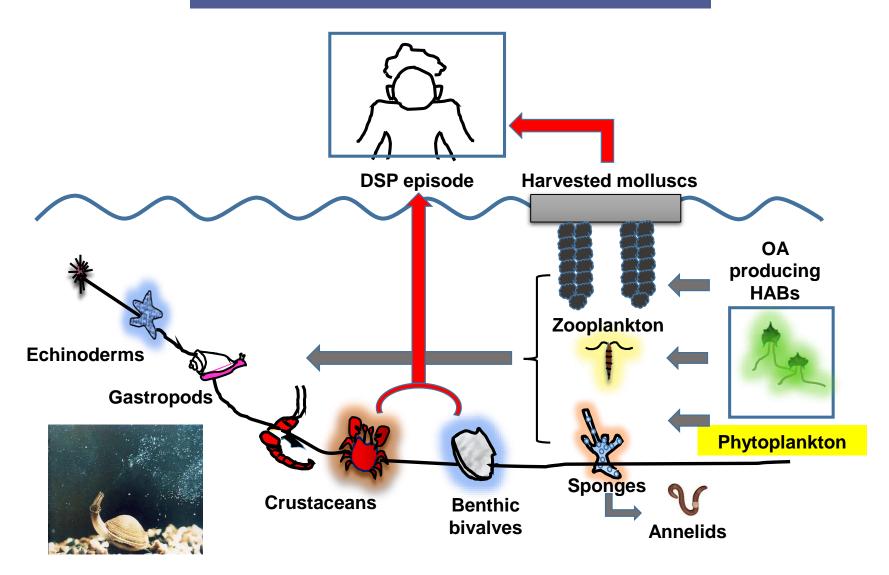
Irish Aquaculture

The total market value of Irish Seafood in 2016 was €943 Million, of which €563 Million (60%) was due to exportation of produce (Bord Bia, 2017)


As of 2017, Ireland had an 8% share in mussel production – scientific name *Mytilus edulis* (Bord Bia, 2017).

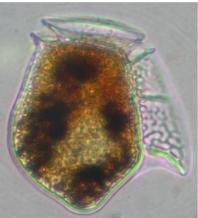
Mussel industry is split into two main production techniques:

- Bottom mussel (naturally growing on the seabed and harvested by specialised dredging equipment)
- Rope mussels (cultivated on rope structures in an aquaculture environment) (Bord Iascaigh Mhara, 2006)

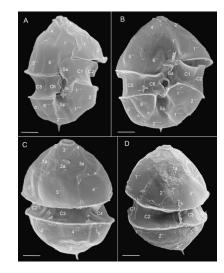


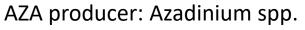
Bioaccumulation of marine toxins

Algal Blooms


Prorocentrum lima

D. fortii


D. acuminata



D. acuta

Marine Algae Effects:

- Positive
- Negative

Amphidoma languida

Harmful Algal Blooms (HABs)

- Algae populations can increase rapidly: "Red Tides"
- Blooms are *not always* visible
- Phytoplankton generally proliferate in Summer when the water is calm and warmer.

http://kodu.ut.ee/~olli/eutr/html/htmlBook_71.ht ml

Marine Toxin Syndromes

- Five major toxic syndromes:
 - Diarrhetic Shellfish Poisoning (DSP)
 - Azaspiracid Shellfish Poisoning (AZP)
 - Amnesic Shellfish Poisoning (ASP)

- Paralytic Shellfish Poisoning (PSP) Saxitoxin
- Neurotoxic Shellfish Poisoning (NSP) Brevetoxins

Marine toxins

	Toxin group	Syndrome
Hydrophilic toxins	Domoic acid Saxitoxins	ASP PSP
	Tetrodotoxin	TTX poisoning
	Palytoxin	Palytoxin poisoning

	Toxin group	Syndrome
Lipophilic toxins	Okadaic acid	DSP
	Dinophysistoxins	
	Pectenotoxins	
	Saxitoxin	PSP
	Azaspiracids	AZP
	Cyclic imines	Not known

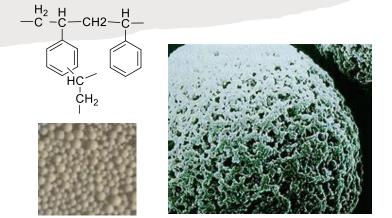
Early Warning: Solid Phase Adsorption Toxin Tracking (SPATT)

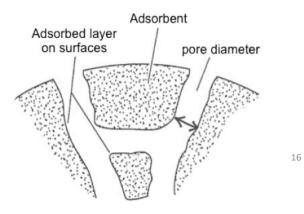
 In-situ adsorption sampling can warn when harmful algal bloom imminent.

'SPATT' bag

Permeable Bag

Polymer resin beads ('solid phase'): e.g. DIAION HP20, SEPABEADS SP700 or Amberlite.


Solid phase adsorption toxin tracking (SPATT): a new monitoring tool that simulates the biotoxin contamination of filter feeding bivalves. MacKenzie L, Beuzenberg V, Holland P, McNabb P, Selwood A. Toxicon. 2004 Dec 15;44(8):901-18.



Polymer Resin Adsorbents

Structure and physical characteristics

- What are resin adsorbents?
- How do the work?
- How are they used to concentrate biotoxins?

Polymer Resin Adsorbents

HP20 Datasheet...

	Product Data Sheet		No.01-10-A-0103		
	DIAION [™] HP20				
	DIAION TM HP20 is based on a unique rigid polystyrene/divinylbenzene matrix. A controlled pore size distribution and large surface area offer excellent resolution and the capacity for a wide range of molecules, from small peptides and oligonucleotides up to large proteins.				
	Grade Name Bead Form		DIAION [™] HP20 Spherical, porous		
	Matrix		Polystyrene/divinylbenzene		
Э	Chemical Structure				
	Shipping Density*	g/L	690		
	Water Content	%	55 - 65		
	Particle Size Distribution thr. 250 µm	%	10 max.		
	Effective Size	mm	0.25 min.		
	Uniformity Coefficient		1.6 max.		
	Particle Density*	g/mL	1.01		
	Specific Surface Area* Pore Volume*	m²/g	590		
		mL/g	1.3		
	Pore Radius*	Å	290		

Moto - proposition with a mark "#" are referential data

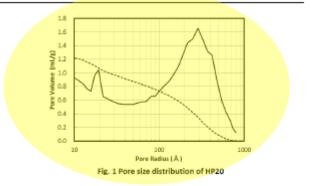
17

- What are resin adsorbents?
- How do the work?
- How are they used to concentrate biotoxins?

Polymer Resin Adsorbents

No.01-10-A-0103

HP20 Datasheet...


Product Data Sheet
DIAION[™] HP20

DIAION[™] HP20 is based on a unique rigid polystyrene/divinylbenzene matrix. A controlled pore size distribution and large surface area offer excellent resolution and the capacity for a wide range of molecules, from small peptides and oligonucleotides up to large proteins.

- What are resin adsorbents?
- How do the work?
- How are they be used to concentrate biotoxins?

- What are resin adsorbents?
- How do the work?
- How are they be used to detect biotoxins?

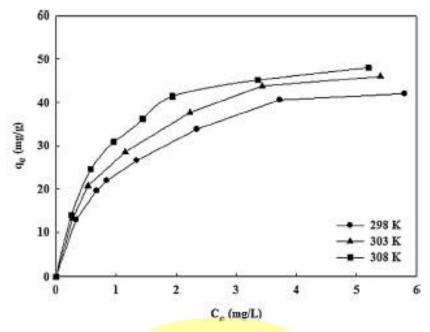
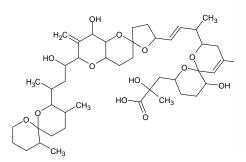
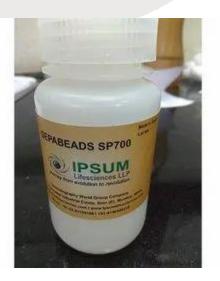



Fig. 2. Adsorption isotherm for paclitaxel onto HP-20 at different temperatures.


- XAD-7 Lipophilic shellfish toxin sorbent
- **SP700 for pharmaceutical** applications, compounds up to 60,000 MW (molecular weight).
- Mixed-mode phases (cross-polarity range of compounds, simultaneous preconcentration).

 $-C^{H_2}-C^{$

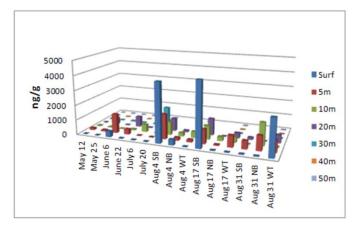
L CH2

ĊH₂

Polymer Resin Adsorbents Practical session AFTER LUNCH

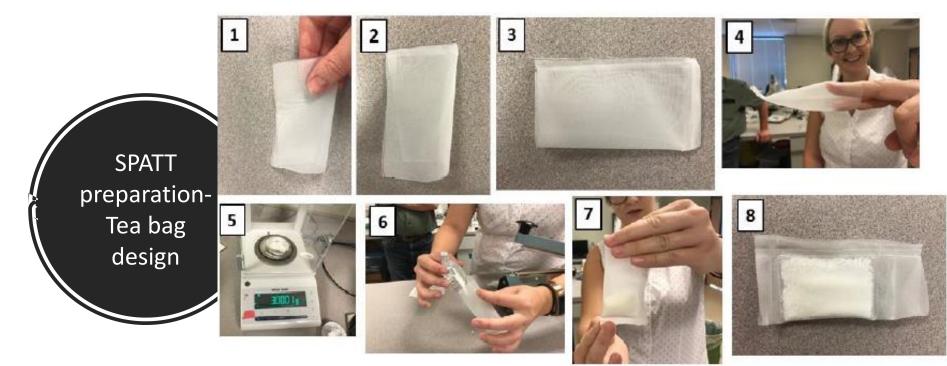
- 1. Bulk Adsorption (SPATT bag, 'IAV')
- 2. Large volume, fast flow
 preconcentration ('Smart Pump', '7Day-Rig' technique)

Passive sampling method (SPATT)



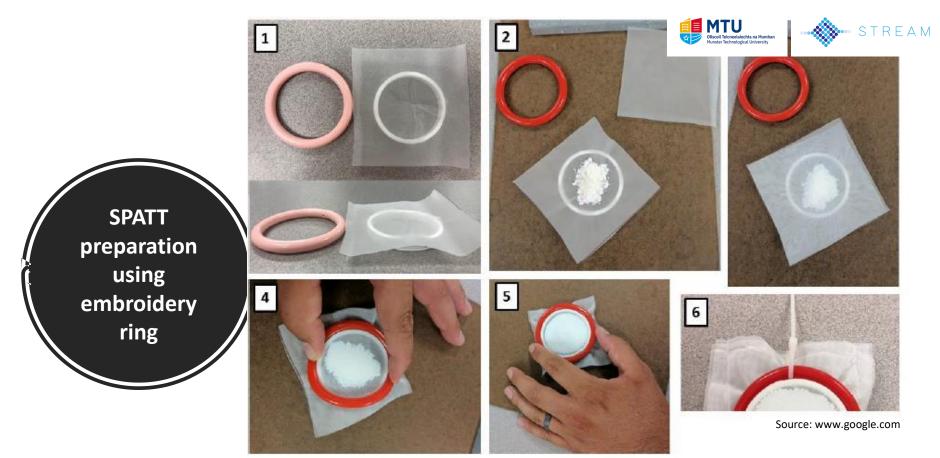
Spatial and temporal analysis of marine biotoxins

Lough Hyne Marine Nature Reserve, West Cork, Ireland



The distribution of Okadaic acid (DSP) at 7 depths over 4 months

Based on method originally devised by MacKenzie et al. 2004


McCarthy, M., Bane; V., García Altares Pérez, M., van Pelt, F.N., Furey, A., O'Halloran, J. Assessment of emerging biotoxins (pinnatoxin G and spirolides) at Europe's first marine reserve: Lough Hyne. Toxicon (2015) Dec 15;108:202-9. doi: 10.1016/j.toxicon.2015.10.007.

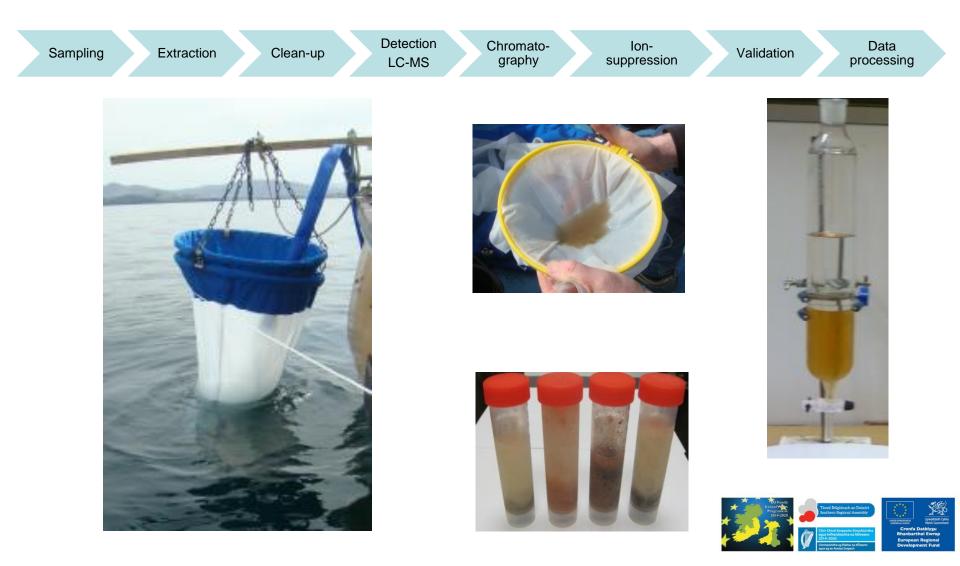
Source: www.google.com

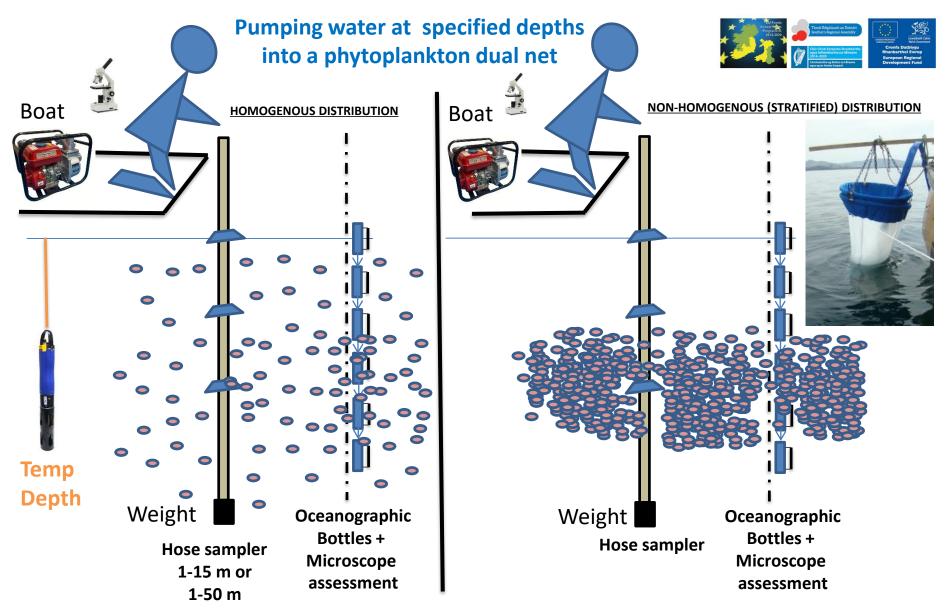
Bag's dimension : 4.5" X 4.5" Made from 95 μm polyester mesh

To form a thin layer of resin Rundberget *et al.**, placed the resin between two layers of nylon mesh that was clamped tightly into a frame.

*T. Rundberget, et al, Toxicon 50 (2007) 960–970

Redesigned SPATT bags



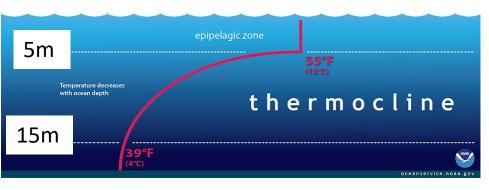


Previous Project_Active toxin sampling

Bio-harvesting of algal toxins


'Traditional' method - collect bulk samples of phytoplankton

Figure: On-board Pump + Hose (dropped to various depths)

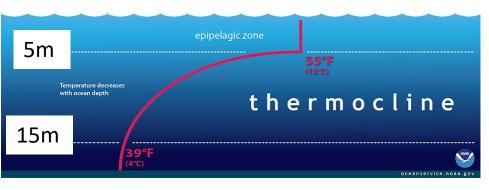

<u>'Modular Bulk Sampling' method on BIM barge</u> (Castletownbere) to collect bulk phytoplankton – BIM Barge submersible pumps with sensors

1. 7-day Rig: Pumping water at 3 specified depths

Elie Fux et al. 2010 Toxicon "Production of diarrhetic shellfish poisoning toxins and pectenotoxins at depths within and below the euphotic zone" – Section 2.3.1 - Water samples were obtained every 3 h at the maximum chlorophyll layer located just above the thermocline using the profiler's peristaltic pump and filtered over a 200 μ m and a 20 μ m mesh. The depth of the layer varied from 22 to 34 m depending on the time of the day (SW coast of Ireland).


- 2. SPATT bags 3 g of adsorbent each
- 3. Water samples collected for LC-MS analysis
- 4. Phytoplankton vertical hauls
 - Once every two weeks

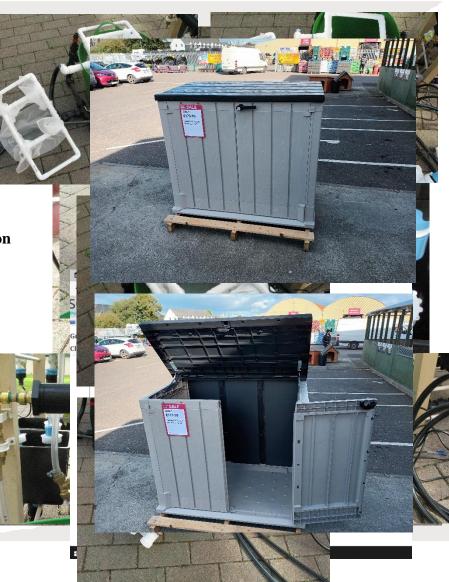
EXO2 sonde multi-parameter Depth; Temperature; Salinity/conductivity; pH; Dissolved oxygen; Turbidity; Total Algae - Chlorophyll + BGA-PE


<u>'Modular Bulk Sampling' method on BIM barge</u> (Castletownbere) to collect bulk phytoplankton – BIM Barge submersible pumps with sensors

1. 7-day Rig: Pumping water at 3 specified depths

Elie Fux et al. 2010 Toxicon "Production of diarrhetic shellfish poisoning toxins and pectenotoxins at depths within and below the euphotic zone" – Section 2.3.1 - Water samples were obtained every 3 h at the maximum chlorophyll layer located just above the thermocline using the profiler's peristaltic pump and filtered over a 200 μ m and a 20 μ m mesh. The depth of the layer varied from 22 to 34 m depending on the time of the day (SW coast of Ireland).

- 2. SPATT bags 3 g of adsorbent each
- 3. Water samples collected for LC-MS analysis
- 4. Phytoplankton vertical hauls
 - Once every two weeks



EXO2 sonde multi-parameter Depth; Temperature; Salinity/conductivity; pH; Dissolved oxygen; Turbidity; Total Algae - Chlorophyll + BGA-PE

Modular Bulk Sampling: '7-Day-Rig'

- 1. Sample from three depths simultaneously (e.g., 5,10,15m
- 2. Seven independent collection capsules
- 3. Temporal sampling distribution or different phase types
- 4. Preconcentration of water-borne toxin (accumulator tank, sampling water drawn from between coarse and fine plankton net, differential feed and sampling pump rates).
- 5. In-line self-cleaning (purging) filter.
- 6. Remote control and monitoring with industry standard techniques (SCADA via ModBus and GSM communica
- 7. Portable: 24V DC (potentially battery operated).

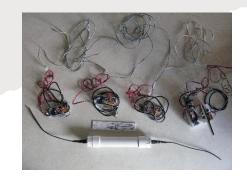
Bulk Sampling: 'I.A.V.'

- 1. Sample large water volume brought to the surface over several hours.
- 2. Sample with up to four different phases simultaneously.
- 3. Apply agitation strategy to optimize adsorption.

4. Portable, battery operated.

Bulk Sampling: Submersible Pump Sample Concentrator

- 1. High flow large water volume sampled in-situ.,
- 2. Large quantity of phase, sample captured when algal bloom event suspected.
- 3. Inexpensive, commonly available components (off-the-shelf AC pump).



REMINDER:

- 1. SEAMOTE Water Column Sensors (live data to MQTT broker).
- 2. HP20 Adsorbency demonstration!

THANK YOU FOR YOUR ATTENTION:

STREAM

STREAM is Part-Funded by the ERDF via the Ireland Wales Programme.